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We present the results of numerical simulations of the fluctuations of the electrostatic potential and electric
field inside cavities created in the fluid of dipolar hard spheres. We found that the thermodynamics of polar
solvation changes dramatically when the cavity size becomes about 4–5 times larger than the size of the liquid
particle. The range of small cavities can be reasonably understood within the framework of current solvation
models. On the contrary, the regime of large cavities is characterized by a significant softening of the cavity
interface resulting in a decay of the fluctuation variances with the cavity size much faster than anticipated by
both the continuum electrostatics and microscopic theories. For instance, the variance of the electrostatic
potential at the cavity center decays with the cavity radius R0 approximately as 1 /R0

4−6 instead of the 1 /R0

scaling expected from the standard electrostatics. Our results suggest that cores of nonpolar molecular assem-
blies in polar liquids lose solvation strength much faster than is traditionally anticipated.
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I. INTRODUCTION

Solvation represents the process of inserting a usually
molecular-size object into a condensed-phase environment.
Since a significant part of chemistry and all life happen in
liquid solutions, the traditional focus has been on solvation
in liquids, polar liquids in particular. The heterogeneous
problem of solvation is probably as complex as the theory of
liquids itself and is haunted by the same basic issues making
the quantitative description of liquids so challenging. There
are two dominating and mutually compensating contribu-
tions to the free energy of solvation: The positive free energy
of creating a cavity �empty space� for a molecule to be in-
serted and a negative stabilization energy from short-range
�van der Waals� and long-range �electrostatic� forces �1�. The
positive free energy of cavity formation is normally signifi-
cantly compensated by the negative stabilization free energy
resulting in the overall solvation free energy often small in
comparison with the two components, a situation akin to the
competition between repulsive and attractive forces in equi-
librium liquids �2�.

The present study is devoted to electrostatic solvation,
i.e., the free energy arising from electrostatic interactions
between the charge distribution of a solute with the charge
distribution of a liquid solvent. The charge distribution
within molecular solutes is often modeled by atomic partial
charges employed by force fields of numerical simulations
�3�. On the contrary, the charge distribution of the solvent
molecules is often well represented by molecular multipoles
following the well established tradition of classical electro-
statics �4� and dielectric theory �5�. Extensions to models
utilizing atomic charges are also possible as used in numeri-
cal simulations �3� and interaction-site models of molecular
liquids �2�.

Electrostatic solvation is believed to be well understood.
Following Born �6� and Onsager �7�, the problem is tradi-
tionally recast in terms of continuum electrostatics where the
electrostatic free energy is sought for the solute charges in-
serted into a dielectric cavity. This approach has been exten-
sively tested against the experimental database of solvation
of small ions and neutral molecules in polar molecular liq-
uids �8�. Despite some inconsistencies, the formalism can

be easily incorporated into quantum calculations and can
even be quantitative once the dielectric cavity is properly
parametrized.

There are however still some fundamental issues that can-
not be addressed within electrostatic models. The solution of
the Poisson equation in dielectric media is essentially a
boundary condition problem in which the assumptions tacitly
made by the material Maxwell’s equations about the struc-
ture of the dielectric interface are essential for the solution.
The standard electrostatics assumes abrupt discontinuity of
the dipolar polarization at the dielectric surface. This bound-
ary condition creates surface charge �5� which is ultimately
responsible for the electrostatic potential within the dielectric
cavity. Whether interfaces of real polar liquids �9� match the
assumption of abrupt discontinuity of the bulk polarization is
an open question. For instance, the electric field within a
cavity in a polar liquid was found to be much different from
the prediction of standard electrostatics up to the cavity size
of a mesoscale dimension �10�.

A new additional piece of evidence comes from recent
studies of hydrophobic solvation essential for colloid stabil-
ity, biopolymer folding, and formation of biological su-
pramolecular structures �11,12�. It was found that solvation
of nonpolar solutes changes dramatically in character at the
length of about 1 nm, which is about three molecular diam-
eters for aqueous solvation �13�. Solvation of solutes larger
than this characteristic length was found to be dominated by
surface effects, i.e., the structure of water at the hydrophobic
interface �13,14�. Weak dewetting �15,16�, i.e., a substantial
decrease of the water density at the interface compared to the
bulk water, was found to be a central part of solvation of
large hydrophobic solutes.

Given the current interest in solvation at mesoscale
�17,18�, to a large extent driven by applications to biology
�19–21� and nanoconfinement �22�, we address here the
problem of electrostatic solvation of solutes significantly
larger than have been mostly studied so far. Our study is
driven by the question whether the change in the solvation
character established for hydrophobic solutes �12� is re-
flected in an equally dramatic change in the character of
electrostatic solvation. The fact that the properties of a polar
liquid interface are inconsistent with the assumptions of
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Maxwell’s electrostatics �10� points to the possibility of a
new solution once the size of the solute exceeds some critical
dimension. This is indeed the result we report here.

We have found from numerical simulations that the scal-
ing of the fluctuations of the electrostatic potential and elec-
tric field with the cavity radius is consistent with the expec-
tations of electrostatics �qualitatively� and molecular
solvation models �quantitatively� for small solutes. On the
contrary, this scaling changes dramatically for large cavities,
with the threshold cavity size in approximately the same
range as the threshold solute/solvent size ratio observed for
hydrophobic solvation. It turns out that the core of the solute
becomes nonpolar with its growing size much faster than is
normally anticipated. We will start our discussion with for-
mulating the general results of the Gaussian solvation ther-
modynamics and then proceed to the outcome of computer
simulations.

II. THERMODYNAMICS OF ELECTROSTATIC
SOLVATION

By definition, electrostatic component �0s of the chemical
potential of solvation is given by the ratio of two partition
functions: One including the electrostatic solute-solvent in-
teraction potential V0s and one including nonelectrostatic
solute-solvent interactions and all interactions between the
solvent particles. All of these latter interactions are incorpo-
rated in the Hamiltonian H0, while the overall Hamiltonian
of the solute-solvent system is H0+V0s. The relation for �0s
is then

e−��0s��� = Q���−1� e−�V0s−�H0d� , �1�

where

Q��� =� e−�H0d� . �2�

Here, we use subscript “0” for the solute and subscript “s”
for the solvent, d� denotes integration over the system phase
space, and � is the inverse temperature. Equation �1� can be
conveniently rewritten in terms of the product of the Boltz-
mann distribution of finding the solute-solvent energy �
=V0s and the probability density P�� ,��,

e−��0s��� =� P��,��e−��d� , �3�

where

P��,�� = Q���−1� ��� − V0s�e−�H0d� . �4�

Equation �3� is exact and it states that all the thermody-
namic information required to understand electrostatic solva-
tion is contained in the statistics of the electrostatic interac-
tion energy �=V0s when the solvent is actually not polarized
by this potential; V0s=0 for the Hamiltonian H0.

The approximation that we will adopt in our formalism,
which is supported by our present simulations and data from

other groups �23–25�, is to assume that the distribution func-
tion P�� ,�� is a Gaussian function with zero average

P��,�� � exp�−
�2

2�2���� . �5�

The approximation of zero average is the reflection of the
fact that no specific orientation of the solvent dipoles is cre-
ated around a nonpolar solute. This approximation is not
necessarily always correct �9,26,27�, but is insignificant for
most of our development since a nonzero average, if it exists,
can always be incorporated as a linear shift of �. What is the
most significant property for our analysis is the magnitude
and temperature dependence of the Gaussian width �2���.

Within the Gaussian approximation for the electrostatic
fluctuations around a nonpolar solute the solvation thermo-
dynamics gains a simple and physically transparent form.
The chemical potential of electrostatic solvation is

�0s = − ��/2��2��� . �6�

In addition, one can determine the energy e and entropy s of
electrostatic solvation

e = �V0s	 + 	ess,

Ts =
�V0s	

2
+ 	ess. �7�

In this equation, �V0s	 is the average solute-solvent electro-
static interaction energy when the full solute-solvent interac-
tion is turned on and the system Hamiltonian is H=H0+V0s.
From Eqs. �6� and �7�,

�V0s	 = − ��2��� . �8�

The term 	ess in Eq. �7� determines the change in the
interaction energy between the solvent molecules induced by
electrostatic solute-solvent interaction. This energy term is
identically equal to the corresponding contribution to the sol-
vation entropy, T	sss=	ess, so that 	ess cancels out in the
solvation chemical potential which is determined by the
solute-solvent interaction thermodynamics only �28,29�. The
term 	ess can be calculated by either taking the temperature
derivative of the Gaussian width �2��� or from a third-order
correlation function

	ess = −
�2

2

��2

��
= ��2/2���V0s

2 �H0	0. �9�

In Eq. �9�, the average �¯	0 is over an ensemble of a non-
polar solute in equilibrium with the solvent, collectively de-
scribed by the Hamiltonian H0. In addition, �V0s=V0s
− �V0s	0 and �H0=H0− �H0	0 are the deviations from the av-
erage values determined on the same unpolarized ensemble.

III. SIMULATIONS AND DATA ANALYSIS

While the equations presented in Sec. II are generally
applicable to an arbitrary solute, we will use numerical
Monte Carlo �MC� simulations �3� to determine the statistics
of fluctuations produced in spherical cavities carved from a
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liquid of dipolar hard spheres �see Appendix A for the de-
scription of the simulation protocol�. The fluid of dipolar
hard spheres leaves out many important properties of real
liquids, most notably van der Waals forces and higher order
multipoles. However, it allows a significant simplification of
the solvation thermodynamics since all physical properties of
the solvent are expressed in terms of only two parameters,
the reduced density 
*=
�3 and the reduced dipole moment
�m*�2=�m2 /�3, where m is the dipole moment and � is the
diameter of the dipolar particles. Since the reduced density is
fixed at 
*=0.8 in our simulations, our results are fully de-
fined in terms of two parameters: The reduced cavity radius
R0 /� and the polarity parameter �m*�2. The representation in
terms of the dielectric constant �s can be easily achieved as
well since these values are tabulated from our simulations as
is shown in Fig. 1. The dielectric constants were calculated
from Neumann’s formalism �30� as described in detail in
Ref. �31�.

We will also limit our consideration to two types of elec-
trostatic multipoles most commonly studied in theories and
applications of solvation, point ion and point dipole �6,7,24�.
In both cases, the corresponding multipole is placed at the
center of the spherical cavity. The solute-solvent interaction
potential is then given as V0s=q0�s in the case of an ion and
V0s=−m0 ·Es for a dipole. In these relations, q0 and m0 are
the charge and dipole moment of the probe multipole and �s
and Es are, respectively, the potential and electric field pro-
duced by the solvent at the multipole position.

The main parameter entering the Gaussian model of sol-
vation that we want to monitor is the Gaussian width �2���.
Since we want to deal with dimensionless quantities, we will
in fact calculate the temperature reduced parameter

� = �2�2��� = �2���V0s�2	0. �10�

Since this parameter depends on the multipolar character of
the solute, it is convenient to take this information out and
consider the parameter 	 such that the temperature-reduced
electrostatic energy of the solute is taken out as a multiplier

� = w	 . �11�

Here, the electric field of the multipole �charge or dipole� E0
is used to define the electrostatic energy

w = ��/8���



E0�r�2dr , �12�

where the integral is taken over the solvent volume 
 out-
side the spherical cavity.

The parameter w is equal to �q0
2 / �2R0� for an ion and

�m0
2 / �3R0

3� for a dipole, where R0 is the cavity radius. There-
fore, one can calculate the parameter 	 according to the fol-
lowing relations in case of an ionic �subscript “i”� or dipolar
�subscript “d”� solute

	i = 2�R0����s�2	0,

	d = �R0
3���Es�2	0. �13�

Similarly, we will introduce the reduced parameter 	ss for
the components of the internal energy and entropy arising
from the alteration of the solvent-solvent interactions,
�	�ss=w	ss,

	ss
i = �2R0����s�2�H0	0,

	ss
d = ��2R0

3/2����Es�2�H0	0. �14�

A few analytical results from standard electrostatics �4� can
be used as benchmarks in calculating 	i and 	d. The con-
tinuum electrostatics of Born �6� and Onsager �7� equations
gives the response functions 	i,d depending only on the di-
electric constant �s of the dipolar liquid,

	i = 2�1 −
1

�s
� �15�

and

	d = 6
�s − 1

2�s + 1
. �16�

In addition, several microscopic relations have been derived
based on different formulations of the liquid-state theory. A
closed-form equation for ion solvation is provided by the
Ornstein-Zernike integral equations for the ion-dipole mix-
ture solved in the mean-spherical approximation �MSA�
�32�,

	i =
2R0

R0 + �L
�1 −

1

�s
� . �17�

In this equation, �L=3�� / �1+4�� is the correlation length of
the longitudinal polarization fluctuations of a dipolar liquid
and � is the MSA polarity parameter �33�.

An analogous MSA solution exists for a mixture of dipo-
lar particles of different size �34�, which gives the parameter
	d. Truncated perturbation expansions �35� are however
known to work better in this case with the result �31,36�

0 1 2 3

(m
*
)
2

0

100

200

300

ε s

FIG. 1. Dielectric constant �s of the liquid of dipolar hard
spheres vs the dipolar parameter �m*�2=�m2 /�3; 
*=0.8. The solid
line represents the Padé approximation of the simulation data:
�s�x�= �1+a1x+a2x2� / �1+b1x+b2x2� with a1=2.506, a2=3.057, b1

=−0.180, b2=−0.008 65 and x= �m*�2. The dielectric constants
were calculated from NVT MC simulations of the homogeneous
liquid of dipolar hard spheres using the Neumann �30� correction
for the cutoff of dipolar interactions treated by the reaction-field
formalism.
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	d = 6� R0

Reff
�3 y

1 + ��y,r0s�y�3I0s
�3�/Reff

3 . �18�

Here, r0s=R0 /�+0.5 is the reduced distance of the closest
approach of the liquid molecules to the cavity and y
= �4� /9��m2
 is the standard density of dipoles in the dipo-
lar liquid �5�, 
 is the liquid number density. In addition,
I0s

�3��r0s ,
*� is the three-particle perturbation integral which is
a function of the liquid density and r0s and Reff�r0s ,
*� is the
effective radius of the cavity

Reff
−3�r0s,
*� = 3�

0

� dr

r4 g0s
�0��r� . �19�

In this equation g0s
�0��r� is the hard-sphere distribution func-

tion of the liquid particles as a function of the distance r
from the cavity center. All functions Reff�r0s ,
*�, I�3��r0s ,
*�,
and ��y ,r0s� are given analytically in terms of the corre-
sponding parameters in Ref. �36�.

IV. RESULTS

Our simulations have produced an unexpected result. We
found that the scalings of the electrostatic fluctuations, and
of the corresponding chemical potentials, with the cavity size
do not follow the predictions of either the continuum elec-
trostatics or microscopic solvation models in the limit of
large cavities. The results are shown in Fig. 2. As is seen, the
potential variance ����s�2	 decays much faster than the ex-
pected 1 /R0 scaling �Eqs. �13� and �15�� for all cavities
greater than the size of the solvent particle. The large cavity
scaling does not follow any universal law, but instead de-
pends on polarity of the liquid �parameter m*, Fig. 3�. For
the range of liquid polarities studied here, the large-cavity
scaling of ����s�2	 is approximately 1 /R0

4−6 �Fig. 3�a��.
Fluctuations of the electric field at the cavity center do not

deviate that dramatically from the traditional expectations,

but the parameter 	d still decays to zero �Fig. 2�b�� instead of
leveling off as suggested by Eqs. �16� and �18�. In fact, 	d
follows Eq. �18� quite well up to the cavity size about 4–5
times larger than the liquid particle, but then starts to drop
following qualitatively the trend seen for the potential fluc-
tuations. Continuum electrostatics �Eqs. �15� and �16�� fails
both qualitatively and quantitatively for the electrostatic fluc-
tuations of either the potential or the electric field.

One can understand the appearance of the 1 /R0
4 scaling

for 	i from the following qualitative arguments. A charge
placed at the cavity center generates dipolar polarization P
�� /r2 in the medium, where �=�m2 /3. If this polarization
field propagates through the entire liquid, one needs to inte-
grate −PE�� /r4 over the liquid volume, which results in
1 /R0 scaling for the interaction energy. If, on the contrary,
the polarization is screened by the liquid layers subsequent to
the first polarized layer, one gets an alternative scaling of
1 /R0

4 arising from the first solvation layer only. The exact
microscopic mechanism behind the solvent reorganization at
the interface is unknown, but these simple arguments suggest
that the solvent at the surface of a large cavity has enough
configurational flexibility to reorganize itself to effectively
screen the penetration of the field into the liquid. The same
arguments would suggest the scaling 1 /R0

6 for the variance of
the field fluctuations. This scaling seems to apply to low-
polarity liquids, but the decay slows down to 1 /R0

5 for higher
polarities �Fig. 3�b�� pointing to a more correlated response
of the dipoles in the first two solvation layers.

With the dramatic failure of some very basic expectations
regarding electrostatic fluctuations, as is shown in Fig. 2, one
wonders if the Gaussian approximation for the distribution of
the electrostatic interaction energies �Eq. �5�� fails for large
cavities. We have performed extensive tests of the Gaussian
statistics of the electrostatic fluctuations as summarized in
Appendix B. In particular, we have looked at the parameter
�G describing deviations from the Gaussian statistics for both
potential and field fluctuations,
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FIG. 2. 	i �a� and 	d �b� vs the cavity radius R0 for �m*�2

=0.5 �circles�, 1.0 �squares�, 2.0 �diamonds�, and 3.0 �up-triangles�.
The dashed line in �a� gives the result of Eq. �17� for m*=1.0. The
dashed-dotted and dashed lines in �b� show the application of Eq.
�18� at �m*�2=0.5 and 1.0, respectively; N=1372.
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FIG. 3. �R0 /��4	i �a� and �R0 /��3	d �b� vs the cavity radius R0

for �m*�2=0.5 �circles�, 1.0 �squares�, 2.0 �diamonds�, and 3.0 �up-
triangles�; N=1372.
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�G =
���V0s�4	0

���V0s�2	0
2 − 3. �20�

This parameter was found to be around zero, as expected for
the Gaussian statistics, within about 5% of the simulation
uncertainties �see Appendix B�. In addition, we have studied
the dependence of the second field cumulants on the magni-
tude of the solute dipole placed at the cavity center, and the
results are consistent with the expectations from the Gauss-
ian solvation model. All of these tests have shown that the
Gaussian approximation is reliable within simulation uncer-
tainties and the observed change in the scaling should be
attributed to a dramatic restructuring of the cavity interface
beyond some crossover cavity size.

In order to gain more insight into the origin of the ob-
served crossover in the scaling with the cavity size, we have
calculated two local parameters related to the orientational
and density structure of the liquid-cavity interface. Figure
4�a� shows the second-rank orientational order parameter of
the permanent dipoles in the first solvation shell at the cavity
surface,

p2�r� = 
�
j

P2�r̂ j · ê j���r j − r�� . �21�

Here, P2�x� is the second Legendre polynomial, r̂ j =r j /rj is
the unit vector in the direction of the liquid particle j, and ê j
is the unit vector along its dipole moment. The orientational
order parameter shown in Fig. 4�a� is calculated by limiting
the distance r to the liquid particles residing in the cavity’s
first solvation shell. The parameter indicates preferential ori-
entation of the first-shell dipoles parallel to the interface. In

contrast, the first-rank orientational parameter, based on the
first-order Legendre polynomial, is identically zero thus im-
plying that there is no net dipolar polarization at the cavity
surface. This result is distinct from the water surface where
water’s large quadrupole moment is responsible for the
asymmetry �9�.

As the cavity gets larger the solvent dipoles find it more
energetically favorable to orient parallel to the interface, as
was also observed for 2D dipolar liquids �38�, for water at
cavity surfaces �39� and liquid-vapor interfaces �9�, and for
interfaces of dipolar liquids �40�. In-plane orientation of di-
poles is also preferable for water at a hydrophobic surface
�41�. However, this preferential orientational order starts to
dissolve with a further increase of the cavity size, after gain-
ing maximum for the cavity about 5 times larger than the
solvent particle. This decay is related to the onset of soften-
ing of the first solvation shell indicated by the contact value
of the pair cavity-solvent distribution function shown in Fig.
4�b�.

The contact value of the pair distribution function first
rises as expected for a hard-sphere solute in a fluid of
densely packed hard spheres �37� �thin solid line in Fig.
4�b��, but then starts to drop. This drop sets in at approxi-
mately the same cavity size R0 /�
2–2.5 as both the down-
ward turn of the orientational order parameter and the onset
of deviations of the electric field fluctuations from the tradi-
tional predictions �position of the maximum in Fig. 2�b��. We
therefore can conclude that the observed change in the char-
acter of the electrostatic fluctuations is related to the soften-
ing of the liquid-cavity interface, which also weakens the
energetic push for a specific dipolar order. This interfacial
softening appears to be a general property of liquids with
attractive interactions �16�.

The position of the maximum of the solute-solvent distri-
bution function defines a natural length scale of the problem
beyond which the character of the electrostatic fluctuations
changes from volume dominated to surface dominated, with
a corresponding change in the scaling. One cannot escape the
analogy between this observation and the transition from the
volume to surface dominated energetics of cavity formation
in water �12,13,18�. The turnover is commonly explained by
the change in the network of water’s hydrogen bonds which
is mostly preserved around small solutes, but become dis-
rupted by solutes of the size larger than the turnover length.
There are no hydrogen bonds for hard-sphere dipoles studied
here, but there is a change in the character of the dipolar
correlations at the turnover, as characterized by the second-
rank orientational parameter. It is therefore not entirely clear
if the same physics is behind the turnover of hydrophobic
solvation �cavity formation� and electrostatic dipolar solva-
tion. What is however clear is that the turnover length seen in
the present simulations, R0 /�
3–4 �Fig. 4�, is noticeably
higher than the maximum of the contact density of water at
around R0 /�
1 first proposed by Pierotti and Stillinger �42�
and more recently found in numerical simulations �14,18�.
Since a similar value of the contact density maximum was
found for cavities in Lennard-Jones �LJ� fluids �16�, the dif-
ference with our observations might originate from LJ attrac-
tions in these two force-field fluids absent from dipolar hard
spheres studied here. If this conjecture is correct, the strength
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FIG. 4. �a�: Orientational order parameter �Eq. �21�� vs the cav-
ity size for different polarities of the solvent, �m*�2=0.5 �circles�,
1.0 �squares�, 2.0 �diamonds�, and 3.0 �up-triangles�; N=1372. �b�
Contact value of the cavity-solvent radial distribution function at
r=R1=R0+� /2 and �m*�2=1.0 vs the cavity radius. Shown are the
results for different number of particles in the simulation box N
=256 �circles�, 500 �squares�, 864 �diamonds�, 1372 �up-triangles�,
2048 �down-triangles�, 2916 �stars�, 4000 �pluses�. Extrapolation to
N→� is shown by the bold solid line. The dashed lines connect the
points. The thin solid line gives the contact value of the distribution
function in the hard-spheres mixture from Ref. �37�.
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of isotropic attractive forces between the solvent particles
might alter the turnover length of electrostatic solvation by
enhancing the interfacial softening.

That the decay of solvation energies is related to the in-
terface softening is also seen from examining the fluctuations
of the potential and field close to the cavity surface. Figure 5
shows the corresponding quantities for a point within the
cavity kept one solvent radius � /2 away from the interface
once the cavity size is increased. Again, simple electrostatic
arguments suggest that the solvation energetics should ap-
proach that for a probe charge or dipole next to an infinite
dielectric wall. Depending on how the dielectric interface is
defined, by the cavity boundary or by the distance of the
closest approach, continuum electrostatics �4� predicts for
������s�2	 the value between ��s−1� / ��s+1� and 0.5��s
−1� / ��s+1�. The observed dependence does seem to inflect
to a plateau at the level consistent with this prediction at an
intermediate cavity size, but then starts to decay. This decay
is however much more gentle than in Fig. 2 indicating that
the area next to the interface experiences a stronger solvent
influence than the part of the hollow space closer to the cav-
ity center.

In Fig. 6 we show the simulation results for the solvent-
solvent component of the solvation entropy �Eq. �7��. Within
the Gaussian approximation, the ratio of the solvent-solvent

solvation entropy, Tsss=	ess, and the solute-solvent entropy,
Ts0s=−��2��� /2, is given as the ratio of the corresponding
reduced response functions

�s = −
sss

i,d

s0s
i,d =

2	ss
i,d

	i,d
. �22�

As is seen, for both the ionic and dipole solvation, there is a
compensation between ordering of the solvent by the solute,
expressed by the always negative s0s, and disordering of the
solvent structure, expressed by the positive sss. This compen-
sation is however far from complete, in contrast to a much
stronger compensation suggested for aqueous solvation
�43,44�. The overall entropy of electrostatic solvation is
therefore negative. Since the parameter �s in Eq. �22� de-
pends weakly on the cavity size, the dramatic change in the
character of solvation found here for �2��� will be reflected
in both the enthalpy and entropy of electrostatic solvation
which are often better accessible experimentally than solva-
tion free energies �44�. Very little is currently known about
the magnitude of �s �44�, in particular for large solutes. Our
recent MD simulations of the redox entropy of hydrated met-
alloprotein plastocyanin �45� have produced �s
0.4 �R0 /�

5.8�. Since that protein carries a negative charge, this
value is consistent with the results for ionic solutes in Fig. 6,
although it is not clear if the Gaussian approximation is ap-
plicable to the protein electrostatics.

V. DISCUSSION

In this paper we have studied polar solvation starting from
Eq. �3� which states that all the information required to cal-
culate solvation thermodynamics is contained in the distribu-
tion P��� of electrostatic interaction energies around a ficti-
tious solute with the solute-solvent electrostatic coupling
switched off. This equation is exact and the approximation
adopted here is that the distribution function P��� is a Gauss-
ian. The distribution P��� can generally be written as

P��� � exp������� �23�

and the integral over � in Eq. �3� can be taken by the steepest
descent around the stationary point �0 defined by the condi-
tion ����0�=1. The Gaussian approximation is then equiva-
lent to assuming that all terms except the linear one can be
dropped from the series expansion of ����� in powers of ��
−�0�.

Our simulations have not identified any significant devia-
tions from the Gaussian statistics of the solute-solvent inter-
action energy. Extensive simulations of solvation of ionic
and dipolar solutes over the last decades �23–25,46� have
also come to the conclusion that the Gaussian picture is an
accurate one implying that P��� is globally a Gaussian func-
tion. However, one can argue that our cavity setup does not
allow us to sample sufficiently around �0 and thus we could
not assess the deviations from the Gaussian statistics. While
that might be true for strong solute-solvent interactions, for
which a significant database pointing to the contrary exists
�23,25,46�, energy �0 is expected to decrease with increasing
the cavity size and the Gaussian approximation is expected
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probe charge and dipole located the distance � /2 from the cavity
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to become increasingly accurate �as indeed seen from com-
paring Figs. 8 and 9 in Appendix B�. However, it is in this
range of large cavities, essentially neglected by previous
studies of electrostatic solvation, that we found the most dra-
matic deviations from the traditional expectations.

The main finding of this study is that electrostatic solva-
tion by polar liquids changes its character at the cavity size
of about 4–5 times larger than the size of the solvent particle.
The regime of small cavities can be reasonably understood
by applying the currently available molecular solvation mod-
els and, in particular, the results for the electric field fluctua-
tions �probe dipole� are in a very good quantitative agree-
ment with the results of perturbation solvation models. In
contrast, solvation in large cavities is dramatically different
and cannot be described by traditional solvation models.

What we have observed here is a dramatic decay of the
solvation strength in the center of the cavity, much faster
than expected from both the continuum electrostatics and
microscopic solvation models. For instance, the variance of
the electrostatic potential decays as 1 /R0

4–6 instead of the
expected 1 /R0 scaling. We suggest that the scaling turnover
comes from the changing character of electrostatic solvation
from volume dominated to surface dominated. The core of a
growing hollow cavity thus becomes nonpolar much faster
than previously anticipated. What it practically means is that
there is very little solvation stabilization for charges inside a
large mesoscale object. This might be a reason why natural
systems requiring hydration of large molecular assemblies
�proteins, etc.� rely on solvation of surface charges for which
much slower decay of solvating power was found here. For
the problem of protein folding, this observation implies a
very strong driving force for placing ionized residues and
cofactors stabilizing protein solvation closer to the interface.
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APPENDIX A: SIMULATION PROTOCOL AND RESULTS

MC simulations were performed with the standard NVT
Metropolis algorithm. The initial configuration was con-
structed starting from an fcc lattice of liquid hard spheres of
diameter � and density 
*=0.8. The hard-sphere solute or
cavity was then “grown” in the center of the simulation box
by increasing the initial cavity diameter of 0.5� with an
0.002� increment, adjusting � to ensure constant density,
and moving and rotating the solvent particles according to
the Metropolis algorithm. After the solute or cavity was con-
structed, the initial configuration was created from 105–106

parallel steps �using OpenMPI� producing different initial
configurations for each processor. The subsequent runs were
then carried out on each processor separately thus minimiz-
ing interprocessor communications. To guarantee the Mar-
kovian statistics, the random number generators used in the
MC moves were seeded independently between the proces-

sors. This implementation has resulted in a linear scaling of
the program output with the number of processors. The pro-
duction runs of �1–5��106 steps were performed on 10 pro-
cessors per �m*�2 per cavity size.

The simulation protocol employed the minimum image
convention and the reaction-field correction �3� for the cutoff
of dipolar interactions at one-half of the cubic simulation
box. Ewald sums �47� were also tested and gave results iden-
tical within simulation uncertainties. The reaction-field cor-
rection was preferred due to better performance. The depen-
dence on the simulation box size was carefully checked in
particular since growing cavity required larger number of
liquid particles to eliminate finite-size effects. The number of
particles N was varied in the range N=108, 256, 500, 864,
1372, 2048, 2916, and 4000 depending on the cavity size.
The representative results for 	i and 	d listed in Table I were
obtained by averaging over several simulation runs with dif-
ferent box sizes and also by extrapolating the plots of corre-
sponding values vs 1 /N to the N→� limit. The system size
dependence does not affect any qualitative conclusions we
make here. Since extrapolation to N→� creates a scatter of
points, the results presented in the plots refer to a given
number of particles in the simulation cell.

APPENDIX B: TESTS OF THE GAUSSIAN
APPROXIMATION

The Gaussian approximation is a central part of our ther-
modynamic arguments and so we have done extensive tests
of its applicability. Figure 7 shows the simulated values of
the parameter �G from Eq. �20� vs the solvent dielectric con-
stant �Fig. 7�a�� and the cavity size �Fig. 7�b��. This param-
eter is close to zero, as expected for a Gaussian noise, within
the simulation uncertainties. An additional test of the Gauss-
ian statistics of electrostatic fluctuations comes from the de-
pendence of the potential and field variances on the magni-
tude of the test multipole located at the cavity center. Since
the chemical potential of solvation is given by the variance
of the solute-solvent interaction potential �Eq. �6��, it is a
quadratic function of the magnitude of a test multipole. This
result, known as the linear response approximation �24�, sug-
gests that the response function, obtained as the second de-
rivative of �0s in the corresponding multipole, does not de-
pend any more on the multipole’s magnitude. It also implies
that 	i,d can be obtained either from simulations of empty
cavities or from simulations involving actual multipoles in-
side the cavity. In this second route, the chemical potential of
solvation and corresponding parameters 	i,d are calculated
from the average solute-solvent interaction energy by using
Eq. �8�. Such simulations involving the probe charge are not
straightforward due to the breakdown of the system neutral-
ity and the related difficulty of using the Ewald sums
�47,48�. We therefore have done simulations of point dipoles
of varying magnitude placed at the cavity’s center. The val-
ues of 	d have been calculated from the average interaction
energy for the cavity size above the threshold seen in
Fig. 2�b�, R0 /�=9.0, and the simulation box containing
N=2048 solvent particles �Fig. 8�.
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Figures 8�b� and 8�c� also present the corresponding con-
tact values of the cavity-solvent pair distribution function
g0s�R1� and the orientational order parameter p2�R1�. The re-
sponse function 	d stays constant almost in the entire range
of m0 studied, starting to rise when the dipole inside the
cavity exceeds the solvent dipole by three orders of magni-
tude. This rise is a reflection of a change in the microscopic
structure of the interface as the first solvation shell gets
stiffer under the pull of the solute dipole field and the first-
shell dipoles start to reorient along the field of the solute

dipole. The observed changes in the functions g0s�R1� and
p2�R1� are, however, much greater than the corresponding
change in 	d testifying to the collective nature of the solvent
dipolar response effectively averaging out the local changes
in the structure of the first solvation shell.

In Fig. 9 we show the same data as in Fig. 8 obtained at a
much smaller cavity size R0 /�=1.5. Here, the change in the
local structure with increasing the solute dipole is more pro-
nounced, and 	d starts to show a dependence on the magni-
tude of the probe dipole signalling the onset of nonlinear

TABLE I. Values of 	i and 	d for �m*�2=0.5,1.0,2.0,3.0 ��s=3.63,8.51,29.9,93.7�. Extrapolations �ext.� were performed with N
=108,256,500,864,1372,2048,2916,4000 liquid particles in the simulation box when available by linearly fitting 	i,d vs 1 /N and taking
the intercept. The system sizes used for the extrapolations are given in the footnotes.

R0 /� N

�m*�2

0.5 1.0 2.0 3.0

	i 	d 	i 	d 	i 	d 	i 	d

0.5 1372 0.781 0.498 1.031 0.753 1.158 1.020 1.185 1.126

ext.a 0.814 0.572 1.052 0.761 1.210 1.030 1.265 1.153

1.0 1372 0.892 1.001 1.035 1.431 1.184 1.801 1.240 1.939

ext.b 0.863 1.009 1.050 1.449 1.171 1.768 1.198 1.854

1.5 1372 0.778 1.256 0.936 1.760 1.058 2.137 1.073 2.286

ext.c 0.834 1.292 1.011 1.772 1.084 2.112 1.103 2.238

2.0 1372 0.795 1.918 0.859 2.314 0.866 2.444

ext.c 0.862 1.965 0.844 2.300 0.859 2.394

2.5 1372 0.533 1.384 0.632 1.955 0.670 2.365 0.666 2.513

ext.c 0.619 1.491 0.692 2.079 0.695 2.470 0.710 2.627

3.0 1372 0.475 1.941 0.499 2.345 0.499 2.492

ext.d 0.612 2.122 0.550 2.468 0.556 2.587

3.5 1372 0.352 1.864 0.355 2.307 0.355 2.482

ext.d 0.459 2.129 0.376 2.539 0.375 2.578

4.0 1372 0.249 1.191 0.252 1.723 0.242 2.188 0.239 2.356

ext.e 0.495 2.186 0.528 2.597 0.533 2.699

5.0 1372 0.136 0.927 0.124 1.431 0.112 1.830 0.107 2.000

ext.f 0.299 1.393 0.310 2.004 0.251 2.388 0.246 2.556

6.0 1372 0.075 0.675 0.061 1.084 0.051 1.483 0.046 1.670

ext.g 0.298 1.449 0.296 2.061 0.236 2.484 0.233 2.553

7.0 1372 0.043 0.478 0.033 0.789 0.024 1.124 0.021 1.263

ext.g 0.192 1.233 0.183 1.834 0.133 2.203 0.125 2.373

8.0 1372 0.026 0.338 0.018 0.581 0.012 0.855 0.010 0.952

ext.g 0.128 1.003 0.114 1.540 0.054 1.790 0.048 2.004

9.0 1372 0.017 0.241 0.011 0.433

ext.g 0.087 0.803 0.071 1.258

10.0 4000 0.036 0.830 0.029 1.176 0.025 1.304

11.25 1372 0.0073 0.119 0.0045 0.230 0.0025 0.383 0.0018 0.426

12.5 1372 0.0050 0.085 0.0031 0.172 0.0017 0.287 0.0012 0.329

a108, 256, 500, 1372, 2048.
b108, 256, 500, 864, 1372.
c256, 500, 864, 1372.
d500, 864, 1372.
e864, 1372, 2048.
f500, 864, 1372, 2048, 2916, 4000.
g1372, 2048, 2916, 4000.
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solvation effects. The variation in the response function is
still mostly within 10% of its value, which can be accounted
for by nonlinear extensions of dipolar solvation models �31�.
We need to stress, however, that the Gaussian approximation
appears to be robust for large cavities which are of main
interest for us here. Figures 8 and 9 in fact demonstrate that
when a dipole is inserted at the center of a large cavity, the
standard solvation models will fail to reproduce the results of

the present numerical simulations. A weak sensitivity of the
response functions to the magnitude of the solute dipole also
suggests that the crossover behavior in the character of elec-
trostatic fluctuations and the corresponding crossover length
will not be significantly affected by the presence of a solute
multipole unless the solute-solvent interactions significantly
exceed the solvent-solvent interactions at the cavity size
when the crossover occurs. The main conclusion of this set
of simulations is that our results obtained from fluctuations
inside empty cavities are transferable to more often encoun-
tered problems when dipoles and charges reside inside mo-
lecular or mesoscopic objects dissolved in polar liquids.
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FIG. 7. Response function 	d �a�, contact value of the cavity-
solvent pair distribution function g0s�R1� �b�, and the orientational
order parameter of the dipoles in the first solvation shell p2�R1� �c�
vs the magnitude of the solute dipole at the cavity center m0. Points
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0.5

0.6

0.7

∆ d

2.5

3

3.5

g 0s
(R

1)

1 10 100 1000
-0.05

0

0.05

0.1

0.15

p 2(R
1)

(a)

(b)

(c)

log (m
0
/m)

10

FIG. 8. Parameter �G describing deviations from Gaussian
statistics �Eq. �20�� vs �s �a� and R0 �b�. Points represent probe ions
�circles� and probe dipoles �squares� for R0 /�=2.5 �a� and
�m*�2=0.5 �b�.

0

0.5

1

1.5

∆ i

0 0.5 1 1.5 2 2.5 3

(m*)
2

0

1

2

∆ d

(a)

(b)

x 5

FIG. 9. 	i �a� and 	d �b� as functions of �m*�2 for R0 /�=0.5
�circles�, 1.0 �squares�, 1.5 �diamonds�, and 6.0 �up-triangles�. The
solid line in �a� shows the result of using Eq. �17� at R0 /�=1.0. The
solid lines in �b� show the result of Eq. �18� for R0 /�=0.5, 1.0, and
6.0 �from down to up�; the dashed lines in �a� and �b� connect the
points. The data for 	i at R0 /�=6.0 �up-triangles� in �a� have been
multiplied by a factor of 5 to bring them to the scale of the plot. The
simulation points were obtained at N=1372 dipolar hard spheres in
the box.

1.6

1.65

1.7

1.75

∆ d

5

5.5

6

g 0s
(R

1)

0 5 10 15 20
m

0
/m

0

0.2

0.4

p 2(R
1)

(a)

(b)

(c)

FIG. 10. Same as in Fig. 8 for R0 /�=1.5; N=864.

ELECTROSTATIC FLUCTUATIONS IN CAVITIES WITHIN… PHYSICAL REVIEW E 78, 041206 �2008�

041206-9



We next turn to the dependence of the cavity response
functions on liquid polarity. Figure 10�a� shows the depen-
dence of 	i on the solvent dipole moment. For small cavities,
when the standard scaling with the cavity size is expected to
apply, the dependence of 	i on polarity does not show a
saturation predicted by the continuum electrostatics �Eq.
�15��. This saturation seems to set in for a slightly larger
cavity, but, as seen for a still larger cavity, it is simply en-
route to become a decreasing function of polarity for the
largest cavities studied here. We can therefore conclude that
there is no range of parameters where both the size scaling
and the dependence on polarity predicted by the continuum
electrostatics for the potential fluctuations are satisfied even
at the qualitative level, not to mention the fact that the pre-
dicted values are significantly off.

The saturation of �0s at �s→� predicted by the Onsager
equation for dipole solvation �Eq. �16�� is never reached in
our simulations. In contrast to the potential fluctuations, the
variance of the field is a uniformly increasing function with
increasing solvent dipole for all cavity sizes studied here. A
similar trend, for a narrower range of parameters, was previ-
ously observed by us �46� and is manifested in solvation
dynamics uniformly slower than continuum predictions �49�.
The results for 	d from Eq. �18� are shown by the solid lines
in Fig. 10�b�. As expected, there is a good agreement be-
tween the microscopic theory and simulations for small cavi-
ties, but then the theory fails when the scaling of the solva-
tion free energy with the cavity size changes and 	d turns
downward as in Fig. 2�b�.
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